618

Letters

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 6, JUNE 1981

Comments on “Conformal Transformations
Combined with Numerical Techniques, with
Applications to Coupled-Bar Problems”

P. A . A.LAURA

Abstract— The writer lists additional references on recent developments
on the conformal mapping method which may be of interest to microwave
specialists.

The writer heartily congratulates Levy for his very interesting
and important contribution' which also deserves attention from
specialists in other fields of technology and applied science.

It is also the purpose of the present paper to point out the
existence of recently published technical literature where other
conformal mapping applications and approaches have been de-
scribed. It is felt that these conformal mapping techniques may
be also of interest to microwave engineers in some instances.

As stated by Levy, classical applications of conformal mapping
deal with solutions of problems of mathematical physics governed
by Laplace’s equation. The fundamental advantage of the meth-
odology lies in the fact that the equation remains invariant under
transformation.

Late in the Nineteenth century the great French mathematician
E. Goursat showed that the solution of the biharmonic equation:

v =0 (1)
is expressible in the form
$=Re[2y(z)+x(2)] @)

where Re means “real part of,” Z denotes x—iy and ¢(z) and
x(z) are appropriate analytic functions [2]. These approach was
later on used by Muschelisvili {3] when constructing a now
classical methodology for solving plane stress analysis problems
in the case of domains of complicated boundary shape based on
the method of conformal transformation.

It is quite interesting to point out that the first analytical
studies on stresses and strains in solid propellant rocket grains
early in the sixties were made using the conformal mapping
approach [4].

In the last two decades numerous nonclassical applications of
the method of conformal mapping have been developed for a
wide family of problems not governed by Laplace’s equation:

theory of elasticity (isotropic and anisotropic media);

determination of cutoff frequencies of electromagnetic wave-
guides (also applications to mathematically related fields such
as acoustical waveguide theory and membrane vibrations);
radio propagation in the atmosphera;

flow and heat transfer in ducts of arbitrary shape;

unsteady heat conduction problems (also diffusional processes

following Fick’s law);
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supersonic flows;

solidification problems;

plate theory (flexure, stability and vibrations problems);

ion optics;

propagation of optical modes in dielectric fibers;

diffraction of electromagnetic waves;

atomic physics (theory of reactive collisions); etc.

An informative review of these applications can be found in
[5].
Finding the analytic function which performs the desired map-
ping of the given simply or doubly connected domain onto a
simpler shape in another plane is obviously one of the most
important steps in these applications.

In the case of simply connected domains Wilson [4] determined
mapping functions by solving an integral equation of the Fred-
holm type. For doubly connected domains, a coupled system of
two integral equations must be solved [6], [7].

Ives has developed several important conformal mapping con-
cepts [8]. His most significant result is the introduction of a new
class of transformation, of which the von Karman- Trefftz trans-
formation is a special case. Ive’s paper deals with the numerical
solution of the transonic flow equations in two dimensions.

A significant accomplishment in the development of conformal
mapping techniques is due to Halsey [9].

In order to calculate the two-dimensional flow about multiele-
ment airfoils he develops a conformal mapping technique based
on the use of fast Fourier Transforms. Unlike other mapping
methods, very arbitrary multielement airfoils (with any number
of elements) can be analyzed. The airfoil components are trans-
formed to the same number of disjoint circles. The flow is
determined in the multiple-circle plane and then transformed
back to the physical plane.

One may conclude that from Ptolomy’s conformal transforma-
tion of the celestial sphere into a plane developed almost 2000
years ago [10] to sophisticated determinations of mapping func-
tions and their application to complex scientific and technologi-
cal problems in a wide variety of fields, Man has accomplished
significantly in this respect in the last twenty centuries.

Reply by? R. Levy’

Dr. Laura has drawn attention to certain interesting applica-
tions of conformal transformation which were not covered in my
paper'. Readers may wish to pursue his references, some of which
are unfortunately rather obscure. Dr. Laura’s own paper [10]
gives a number of more accessible references, some of which are
listed below [11]-[15]. It appears that these are all concerned with
problems which are somewhat loosely related to that considered
in [1]. The latter is restricted to two dimensional solutions of
Laplace’s equation. It points out that conformal transformations
may be applied to eliminate field singularities and, in contradic-
tion to text book statements, need not in fact be restricted to
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shapes which are transformable into perfectly regular boundaries.
The object is to transform to boundaries which may be nonregu-

lar in the mathematical sense (i.e., no exact closed form solution’

exists), but which are smooth and slowly varying, so that elemen-
tary numerical solutions may be applied to give highly accurate
results. Since singularities and sharp corners have been eliminated,
good results are obtained from numerical techniques using rela-
tively coarse meshes. The method should be used in conjunction
with the network analog theory described in [9], which shows how
to avoid slowly convergent and uncertain iterative numerical
techniques.

The references cited by Laura appear to be concerned mainly
with the solution of more difficult field theory problems, e.g.,
determination of the cut off frequencies of waveguides of unusual
cross section [12]-[16]. As Dr. Laura states, Laplace’s equation is
invariant under a conformal transformation, but this is not the
case for more general wave equations. Here conformal trans-
formations may be applied to transform the boundaries into
regular shapes, but the field equations become far more complex.
In a sense one is transforming one type of complex problem into
another, transferring the difficulty from the boundary to the form
of equation. A good example of this is described in [14], where
the groove guide is transformed into a parallel-plate guide filled
with a nonuniform anistropic medium. In solving these trans-
formed problems, complicated Fourier or integral equation tech-
niques need to be employed. The methods have proven quite
successful in many instances, but may be considered to be rather
specialized.

I would like to take this opportunity to make a correction to
eq. (24) of [1] which should read

C,+2G=C;. (24)
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Comments on “The Matched Feedback Amplifier:
Ultrawide-Band Microwave Amplification with GaAs
MESFET’s”

DOUGLAS J. H MACLEAN

In the above paper [1], the bandwidth of a single GaAs
MESFET was extended by means of series inductances (L and
L) in the feedback path.

The authors used voltage vector diagrams to illustrate the
action of this feedback and that of a simpler circuit in which L,
and Ly of Fig. 1(a) were both set to zero, leaving only R g
between drain and gate. A polar plot of the feedback current for
L,=0.6 nH and Lz =045 nH [c.f, 1, fig. 2 curve D] was also
shown [1, fig. 4].

The behavior of their circuit diagram [1, fig. 1(a)], (reproduced
here as Fig. 1), can perhaps be better understood if conventional |
loop gain plots, rather than their vector diagrams, are used. Loop
gain is a well-known concept in feedback amplifiers, and can be
expected to be familiar to readers of the paper [1]. The ap-
propriate point at which to break the loop is in the branch which
contains R 5. If the loop gain was to be measured by means of a
50-8 network analyzer, R 5 could be replaced by two resistors of
some 80-£ connected to the input and output of the analyzer, to
obtain the best accuracy in measuring the quantities §;, and S,,.
This was also done for the present analysis, and the resulting
open-loop gains computed, corresponding to the authors’ curves
A and D [1, fig. 2]. These loop gains are shown in Fig. 2. If we
examine Fig. 2 it is clear that the above values of L;, and Ly
have kept the magnitude of the loop gain more nearly constant.
The phase of this loop gain goes through 0° just above 15 GHz
(compared with 13.75 GHz cited), at which point the “feedback”
is purely positive, but less than —15 dB. In common parlance,
the gain margin is some 15 dB, and the gain margin frequency
around 15 GHz. A phase margin cannot be defined since the
magnitude of the loop gain never exceeds one in the frequency
range shown. Comparing Fig. 2 with [1, fig. 4] it is evident that
the phase angles of the loop gain and of the feedback current
differ by some 180°. Finally, because of the low values of the
loop gain (LG), the quantity |1—LG] is close to unity, and there
can be little gain enhancement due to “positive feedback.”

An improved method of assessing feedback, especially in the
frequency range covered by this amplifier has recently been
described [2]-[5]. It is known as the “embedding network”
method, and is mainly intended for multiloop amplifiers char-
acterized from s-parameter measurements, which yield the best,
commercially obtainable accuracy. A circuit diagram can, how-
ever, be used with some loss of realism arising from the artificial-
ity of most circuit diagrams at such frequencies.
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